numpy.linalg.eigh
- linalg.eigh(a, UPLO='L')[source]
-
Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.
Returns two objects, a 1-D array containing the eigenvalues of
a
, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns).- Parameters:
-
- a(…, M, M) array
-
Hermitian or real symmetric matrices whose eigenvalues and eigenvectors are to be computed.
- UPLO{‘L’, ‘U’}, optional
-
Specifies whether the calculation is done with the lower triangular part of
a
(‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero.
- Returns:
-
- A namedtuple with the following attributes:
- eigenvalues(…, M) ndarray
-
The eigenvalues in ascending order, each repeated according to its multiplicity.
- eigenvectors{(…, M, M) ndarray, (…, M, M) matrix}
-
The column
eigenvectors[:, i]
is the normalized eigenvector corresponding to the eigenvalueeigenvalues[i]
. Will return a matrix object ifa
is a matrix object.
- Raises:
-
- LinAlgError
-
If the eigenvalue computation does not converge.
See also
eigvalsh
-
eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.
eig
-
eigenvalues and right eigenvectors for non-symmetric arrays.
eigvals
-
eigenvalues of non-symmetric arrays.
scipy.linalg.eigh
-
Similar function in SciPy (but also solves the generalized eigenvalue problem).
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalg
documentation for details.The eigenvalues/eigenvectors are computed using LAPACK routines
_syevd
,_heevd
.The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1] The array
eigenvalues
of (column) eigenvectors is unitary anda
,eigenvalues
, andeigenvectors
satisfy the equationsdot(a, eigenvectors[:, i]) = eigenvalues[i] * eigenvectors[:, i]
.References
[1]G. Strang, Linear Algebra and Its Applications, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222.
Examples
>>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> eigenvalues, eigenvectors = LA.eigh(a) >>> eigenvalues array([0.17157288, 5.82842712]) >>> eigenvectors array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary [ 0. +0.38268343j, 0. -0.92387953j]])
>>> (np.dot(a, eigenvectors[:, 0]) - ... eigenvalues[0] * eigenvectors[:, 0]) # verify 1st eigenval/vec pair array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j]) >>> (np.dot(a, eigenvectors[:, 1]) - ... eigenvalues[1] * eigenvectors[:, 1]) # verify 2nd eigenval/vec pair array([0.+0.j, 0.+0.j])
>>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> eigenvalues, eigenvectors = LA.eigh(A) >>> eigenvalues array([0.17157288, 5.82842712]) >>> eigenvectors matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary [ 0. +0.38268343j, 0. -0.92387953j]])
>>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa, va = LA.eigh(a) >>> wb, vb = LA.eig(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j]) >>> va; vb array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary [ 0. +0.89442719j, 0. -0.4472136j ]]) array([[ 0.89442719+0.j , -0. +0.4472136j], [-0. +0.4472136j, 0.89442719+0.j ]])
© 2005–2024 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/2.0/reference/generated/numpy.linalg.eigh.html