pandas.arrays.PeriodArray
- classpandas.arrays.PeriodArray(values, dtype=None, freq=None, copy=False)[source]
-
Pandas ExtensionArray for storing Period data.
Users should use
array()
to create new instances.- Parameters:
-
- values:Union[PeriodArray, Series[period], ndarray[int], PeriodIndex]
-
The data to store. These should be arrays that can be directly converted to ordinals without inference or copy (PeriodArray, ndarray[int64]), or a box around such an array (Series[period], PeriodIndex).
- dtype:PeriodDtype, optional
-
A PeriodDtype instance from which to extract a freq. If both freq and dtype are specified, then the frequencies must match.
- freq:str or DateOffset
-
The freq to use for the array. Mostly applicable when values is an ndarray of integers, when freq is required. When values is a PeriodArray (or box around), it’s checked that
values.freq
matches freq. - copy:bool, default False
-
Whether to copy the ordinals before storing.
Attributes
None
Methods
None
See also
Period
-
Represents a period of time.
PeriodIndex
-
Immutable Index for period data.
period_range
-
Create a fixed-frequency PeriodArray.
array
-
Construct a pandas array.
Notes
There are two components to a PeriodArray
ordinals : integer ndarray
freq : pd.tseries.offsets.Offset
The values are physically stored as a 1-D ndarray of integers. These are called “ordinals” and represent some kind of offset from a base.
The freq indicates the span covered by each element of the array. All elements in the PeriodArray have the same freq.
Examples
>>> pd.arrays.PeriodArray(pd.PeriodIndex(['2023-01-01', ... '2023-01-02'], freq='D')) <PeriodArray> ['2023-01-01', '2023-01-02'] Length: 2, dtype: period[D]
© 2008–2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
© 2011–2025, Open source contributors
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/2.3.0/reference/api/pandas.arrays.PeriodArray.html