pandas.core.window.ewm.ExponentialMovingWindow.corr
- ExponentialMovingWindow.corr(other=None, pairwise=None, numeric_only=False)[source]
-
Calculate the ewm (exponential weighted moment) sample correlation.
- Parameters:
-
- other:Series or DataFrame, optional
-
If not supplied then will default to self and produce pairwise output.
- pairwise:bool, default None
-
If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
Added in version 1.5.0.
- Returns:
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64
dtype.
See also
pandas.Series.ewm
-
Calling ewm with Series data.
pandas.DataFrame.ewm
-
Calling ewm with DataFrames.
pandas.Series.corr
-
Aggregating corr for Series.
pandas.DataFrame.corr
-
Aggregating corr for DataFrame.
Examples
>>> ser1 = pd.Series([1, 2, 3, 4]) >>> ser2 = pd.Series([10, 11, 13, 16]) >>> ser1.ewm(alpha=.2).corr(ser2) 0 NaN 1 1.000000 2 0.982821 3 0.977802 dtype: float64
© 2008–2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
© 2011–2025, Open source contributors
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/2.3.0/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.corr.html