pandas.core.window.rolling.Rolling.mean
- Rolling.mean(numeric_only=False, engine=None, engine_kwargs=None)[source]
-
Calculate the rolling mean.
- Parameters:
-
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
Added in version 1.5.0.
- engine:str, default None
-
'cython'
: Runs the operation through C-extensions from cython.'numba'
: Runs the operation through JIT compiled code from numba.-
None
: Defaults to'cython'
or globally settingcompute.use_numba
Added in version 1.3.0.
- engine_kwargs:dict, default None
-
For
'cython'
engine, there are no acceptedengine_kwargs
-
For
'numba'
engine, the engine can acceptnopython
,nogil
andparallel
dictionary keys. The values must either beTrue
orFalse
. The defaultengine_kwargs
for the'numba'
engine is{'nopython': True, 'nogil': False, 'parallel': False}
Added in version 1.3.0.
- Returns:
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64
dtype.
See also
pandas.Series.rolling
-
Calling rolling with Series data.
pandas.DataFrame.rolling
-
Calling rolling with DataFrames.
pandas.Series.mean
-
Aggregating mean for Series.
pandas.DataFrame.mean
-
Aggregating mean for DataFrame.
Notes
See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
Examples
The below examples will show rolling mean calculations with window sizes of two and three, respectively.
>>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64
>>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64
© 2008–2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
© 2011–2025, Open source contributors
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/2.3.0/reference/api/pandas.core.window.rolling.Rolling.mean.html