pandas.core.window.rolling.Window.mean
- Window.mean(numeric_only=False, **kwargs)[source]
-
Calculate the rolling weighted window mean.
- Parameters:
-
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
Added in version 1.5.0.
- **kwargs
-
Keyword arguments to configure the
SciPy
weighted window type.
- Returns:
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64
dtype.
See also
pandas.Series.rolling
-
Calling rolling with Series data.
pandas.DataFrame.rolling
-
Calling rolling with DataFrames.
pandas.Series.mean
-
Aggregating mean for Series.
pandas.DataFrame.mean
-
Aggregating mean for DataFrame.
Examples
>>> ser = pd.Series([0, 1, 5, 2, 8])
To get an instance of
Window
we need to pass the parameter win_type.>>> type(ser.rolling(2, win_type='gaussian')) <class 'pandas.core.window.rolling.Window'>
In order to use the SciPy Gaussian window we need to provide the parameters M and std. The parameter M corresponds to 2 in our example. We pass the second parameter std as a parameter of the following method:
>>> ser.rolling(2, win_type='gaussian').mean(std=3) 0 NaN 1 0.5 2 3.0 3 3.5 4 5.0 dtype: float64
© 2008–2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
© 2011–2025, Open source contributors
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/2.3.0/reference/api/pandas.core.window.rolling.Window.mean.html