pandas.HDFStore.select

HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False)[source]

Retrieve pandas object stored in file, optionally based on where criteria.

Warning

Pandas uses PyTables for reading and writing HDF5 files, which allows serializing object-dtype data with pickle when using the “fixed” format. Loading pickled data received from untrusted sources can be unsafe.

See: https://docs.python.org/3/library/pickle.html for more.

Parameters:
key:str

Object being retrieved from file.

where:list or None

List of Term (or convertible) objects, optional.

start:int or None

Row number to start selection.

stop:int, default None

Row number to stop selection.

columns:list or None

A list of columns that if not None, will limit the return columns.

iterator:bool or False

Returns an iterator.

chunksize:int or None

Number or rows to include in iteration, return an iterator.

auto_close:bool or False

Should automatically close the store when finished.

Returns:
object

Retrieved object from file.

Examples

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B'])
>>> store = pd.HDFStore("store.h5", 'w')  
>>> store.put('data', df)  
>>> store.get('data')  
>>> print(store.keys())  
['/data1', '/data2']
>>> store.select('/data1')  
   A  B
0  1  2
1  3  4
>>> store.select('/data1', where='columns == A')  
   A
0  1
1  3
>>> store.close()  

© 2008–2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
© 2011–2025, Open source contributors
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/2.3.0/reference/api/pandas.HDFStore.select.html