In chemistry, the biuret test (IPA: , [1]), also known as Piotrowski's test, is a chemical test used for detecting the presence of at least two peptide bonds in a molecule. In the presence of peptides, a copper(II) ion forms mauve-colored coordination complexes in an alkaline solution. The reaction was first observed in 1833.[2] In Poland, the biuret test is also known as Piotrowski's test in honor of the Polish physiologist Gustaw Piotrowski who independently rediscovered it in 1857.[3] Several variants on the test have been developed, such as the BCA test and the Modified Lowry test.[4]
The biuret reaction can be used to assess the concentration of proteins because peptide bonds occur with the same frequency per amino acid in the peptide. The intensity of the color, and hence the absorption at 540 nm, is directly proportional to the protein concentration, according to the Beer–Lambert law.
Despite its name, the reagent does not in fact contain biuret [(H2N−CO−)2NH]. The test is named so because it also gives a positive reaction to the peptide-like bonds in the biuret molecule.
In this assay, the copper(II) binds with nitrogen atoms present in the peptides of proteins. In a secondary reaction, the copper(II) is reduced to copper(I). Buffers, such as Tris and ammonia interfere with this assay, therefore rendering this assay inappropriate for protein samples purified from ammonium sulfate precipitation. Due to its insensitivity and little interference by free amino acids, this assay is most useful for whole tissue samples and other sources with high protein concentration.[5]
Procedure
An aqueous sample is treated with an equal volume of 1% strong base (sodium or potassium hydroxide) followed by a few drops of aqueous copper(II) sulfate. If the solution turns purple, it contains protein. 5–160 mg/mL can be determined. Peptides with the correct length of at least 3 amino acids are necessary for a significant, measurable colour shift with these reagents.[6]
Biuret reagent
The biuret reagent is made of sodium hydroxide (NaOH) and hydrated copper(II) sulfate, together with potassium sodium tartrate,[7] the latter of which is added to chelate and thus stabilize the cupric ions. The reaction of the cupric ions with the nitrogen atoms involved in peptide bonds leads to the displacement of the peptide hydrogen atoms under the alkaline conditions. A tri- or tetra-dentate chelation with the peptide nitrogen produces the characteristic color. This is found with dipeptides.[8]
The reagent is commonly used in the biuret protein assay, a colorimetric test used to determine protein concentration by UV/VIS spectroscopy at wavelength 540 nm.
High sensitivity variants of the biuret test
Two major modifications of the biuret test are commonly applied in modern colorimetric analysis of peptides: the bicinchoninic acid (BCA) assay and the Lowry assay. In these tests, the Cu+ formed during the biuret reaction reacts further with other reagents, leading to a deeper color.
In the BCA test, Cu+ forms a deep purple complex with bicinchoninic acid (BCA),[9] which absorbs around 562 nm, producing the signature mauve color. The water-soluble BCA/copper complex absorbs much more strongly than the peptide/copper complex, increasing the sensitivity of the biuret test by a factor of around 100: the BCA assay allows to detect proteins in the range of 0.0005 to 2 mg/mL. Additionally, the BCA protein assay gives the important benefit of compatibility with substances such as up to 5% surfactants in protein samples.
In the Lowry protein assay, Cu+ is oxidized back to Cu2+ by MoVI in the Folin–Ciocalteu reagent, which forms molybdenum blue (MoIV). Tyrosine residues in the protein also form molybdenum blue under these circumstances. In this way, proteins can be detected in concentrations between 0.005 and 2 mg/mL.[10] Molybdenum blue can in turn bind certain organic dyes such as malachite green and Auramine O, resulting in further amplification of the signal.[11]
References
- ^ "Definition of biuret | Dictionary.com". www.dictionary.com. Archived from the original on 2021-05-11. Retrieved 2021-03-11.
- ^ Rose, Ferdinand (1833). "Über die Verbindungen des Eiweiss mit Metalloxyden" [On the compounds of albumin with metal oxides]. Poggendorff's Annalen der Physik und Chemie (in German). 104 (5). Leipzig, Germany: J.A. Barth: 132-142. Bibcode:1833AnP...104..132R. doi:10.1002/andp.18331040512. OCLC 1481215. Archived from the original on 9 May 2022.
- ^ Piotrowski, G. (1857). "Eine neue Reaction auf Eiweisskörper und ihre näheren Abkömmlinge" [A new reaction of proteins and their related derivatives]. Sitzungsberichte der Kaiserliche Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Classe (Meeting Reports of the Imperial Academy of Sciences, Mathematical-scientific Class) (in German). 24. Vienna: 335–337. OCLC 166037616. Archived from the original on 9 May 2022.
- ^ "Chemistry of Protein Assay". Thermo Fisher Scientific Protein Methods Library. Archived from the original on 2022-03-24. Retrieved 2022-05-08.
- ^ Ninfa, Alexander; Ballou, David; Benore, Marilee (2009). Fundamental Laboratory Approaches for Biochemistry and Biotechnology. Wiley. p. 111. ISBN 978-0470087664. OCLC 1288381941. Archived from the original on 2022-05-09. Retrieved 2022-05-09.
- ^ Fenk, C. J.; Kaufman, N.; and Gerbig, D. G. J. Chem. Educ. 2007, 84, 1676-1678.
- ^ "Chemical Reagents". Archived from the original on 2010-02-13. Retrieved 2010-01-30.
- ^ Datta, S. P.; Leberman, R.; Rabin, B. R. (1959). "The chelation of metal ions by dipeptides and related substances. Part 5.—Cupric complexes of sarcosyl and leucyl ligands". Trans. Faraday Soc. 55: 2141–2151. doi:10.1039/TF9595502141. ISSN 0014-7672. Archived from the original on 2022-05-09. Retrieved 2020-08-29.
- ^ Smith, P.K. et al.: Measurement of protein using bicinchoninic acid. Anal. Biochem. 150 (1985) 76-85.
- ^ O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall: Protein Measurement With the Folin Phenol Reagent, J. Biol. Chem. 193 (1951) 265 - 275.
- ^ Sargent, M.G.: Fiftyfold amplification of the Lowry protein assay. Anal. Biochem. 163 (1987) 476-481.
External links and notes
- Gold. 1990. Organic Compounds in Biological Systems, 2nd ed. John Wiley & Sons, Inc.
- Chemical Reagents
Analytical reagents and tests |
---|
Metals | |
---|
Sugars, fats, and proteins | Sugars & starches |
- Barfoed's test (Monosaccharides)
- Benedict's reagent (reducing sugars etc)
- Bial's test (pentoses)
- Aniline acetate test (pentoses)
- Starch indicator
- Molisch's test (carbs)
- Tollens' reagent (reducing sugars)
- Fehling's solution (reducing sugars)
|
---|
Proteins & amino acids | |
---|
Fats | |
---|
|
---|
Alcohols |
- Benedict's reagent (aldehyde & ketones etc)
- Denigés' reagent
- Lucas' reagent (types of alcohols)
- Ceric ammonium nitrate test (alcohols)
|
---|
Drugs |
- Dille–Koppanyi reagent (barbiturates etc)
- Ehrlich's reagent (indoles, etc)
- Froehde reagent (opioids)
- Gallic acid reagent (drug precursor)
- Liebermann reagent (street drugs)
- Mandelin reagent (ketamine)
- Marquis reagent (MDMA, opiates, etc)
- Mecke reagent
- Drug checking
- Simon's reagent
- Zimmermann reagent (Benzodiazepines)
- Zwikker reagent (barbiturates)
- Salicylate testing
- Folin's reagent
|
---|
Other |
- Dragendorff's reagent (alkaloids)
- Fenton's reagent (creates free radicals)
- Folin–Ciocalteu reagent (antioxidants)
- Murexide test (caffeine etc)
- Melzer's reagent (fungi)
- Marquis reagent (various)
- Nitrate test
- Nitrite test
- Luminol (blood)
- Pesticide detection kit
- Fecal coliform detection
- Prion detection kit
|
---|
|
Topics in organic reactions |
---|
- Addition reaction
- Elimination reaction
- Polymerization
- Reagents
- Rearrangement reaction
- Redox reaction
- Regioselectivity
- Stereoselectivity
- Stereospecificity
- Substitution reaction
|
- A value
- Alpha effect
- Annulene
- Anomeric effect
- Antiaromaticity
- Aromatic ring current
- Aromaticity
- Baird's rule
- Baker–Nathan effect
- Baldwin's rules
- Bema Hapothle
- Beta-silicon effect
- Bicycloaromaticity
- Bredt's rule
- Bürgi–Dunitz angle
- Catalytic resonance theory
- Charge remote fragmentation
- Charge-transfer complex
- Clar's rule
- Conformational isomerism
- Conjugated system
- Conrotatory and disrotatory
- Curtin–Hammett principle
- Dynamic binding (chemistry)
- Edwards equation
- Effective molarity
- Electromeric effect
- Electron-rich
- Electron-withdrawing group
- Electronic effect
- Electrophile
- Evelyn effect
- Flippin–Lodge angle
- Free-energy relationship
- Grunwald–Winstein equation
- Hammett acidity function
- Hammett equation
- George S. Hammond
- Hammond's postulate
- Homoaromaticity
- Hückel's rule
- Hyperconjugation
- Inductive effect
- Kinetic isotope effect
- LFER solvent coefficients (data page)
- Marcus theory
- Markovnikov's rule
- Möbius aromaticity
- Möbius–Hückel concept
- More O'Ferrall–Jencks plot
- Negative hyperconjugation
- Neighbouring group participation
- 2-Norbornyl cation
- Nucleophile
- Kennedy J. P. Orton
- Passive binding
- Phosphaethynolate
- Polar effect
- Polyfluorene
- Ring strain
- Σ-aromaticity
- Spherical aromaticity
- Spiroaromaticity
- Steric effects
- Superaromaticity
- Swain–Lupton equation
- Taft equation
- Thorpe–Ingold effect
- Vinylogy
- Walsh diagram
- Woodward–Hoffmann rules
- Woodward's rules
- Y-aromaticity
- Yukawa–Tsuno equation
- Zaitsev's rule
- Σ-bishomoaromaticity
List of organic reactions |
---|
Carbon-carbon bond forming reactions | Homologation reactions |
- Arndt–Eistert reaction
- Hooker reaction
- Kiliani–Fischer synthesis
- Kowalski ester homologation
- Methoxymethylenetriphenylphosphorane
- Seyferth–Gilbert homologation
- Wittig reaction
|
---|
Olefination reactions |
- Bamford–Stevens reaction
- Barton–Kellogg reaction
- Boord olefin synthesis
- Chugaev elimination
- Cope reaction
- Corey–Winter olefin synthesis
- Dehydrohalogenation
- Elimination reaction
- Grieco elimination
- Hofmann elimination
- Horner–Wadsworth–Emmons reaction
- Hydrazone iodination
- Julia olefination
- Julia–Kocienski olefination
- Kauffmann olefination
- McMurry reaction
- Peterson olefination
- Ramberg–Bäcklund reaction
- Shapiro reaction
- Takai olefination
- Wittig reaction
|
---|
|
---|
Carbon-heteroatom
bond forming reactions |
- Azo coupling
- Bartoli indole synthesis
- Boudouard reaction
- Cadogan–Sundberg indole synthesis
- Diazonium compound
- Esterification
- Grignard reagent
- Haloform reaction
- Hegedus indole synthesis
- Hurd–Mori 1,2,3-thiadiazole synthesis
- Kharasch–Sosnovsky reaction
- Knorr pyrrole synthesis
- Leimgruber–Batcho indole synthesis
- Mukaiyama hydration
- Nenitzescu indole synthesis
- Oxymercuration reaction
- Reed reaction
- Schotten–Baumann reaction
- Ullmann condensation
- Williamson ether synthesis
- Yamaguchi esterification
|
---|
Degradation reactions |
- Barbier–Wieland degradation
- Bergmann degradation
- Edman degradation
- Emde degradation
- Gallagher–Hollander degradation
- Hofmann rearrangement
- Hooker reaction
- Isosaccharinic acid
- Marker degradation
- Ruff degradation
- Strecker degradation
- Von Braun amide degradation
- Weerman degradation
- Wohl degradation
|
---|
Organic redox reactions |
- Acyloin condensation
- Adkins–Peterson reaction
- Akabori amino-acid reaction
- Alcohol oxidation
- Algar–Flynn–Oyamada reaction
- Amide reduction
- Andrussow process
- Angeli–Rimini reaction
- Aromatization
- Autoxidation
- Baeyer–Villiger oxidation
- Barton–McCombie deoxygenation
- Bechamp reduction
- Benkeser reaction
- Bergmann degradation
- Birch reduction
- Bohn–Schmidt reaction
- Bosch reaction
- Bouveault–Blanc reduction
- Boyland–Sims oxidation
- Cannizzaro reaction
- Carbonyl reduction
- Clemmensen reduction
- Collins oxidation
- Corey–Itsuno reduction
- Corey–Kim oxidation
- Corey–Winter olefin synthesis
- Criegee oxidation
- Dakin oxidation
- Davis oxidation
- Deoxygenation
- Dess–Martin oxidation
- DNA oxidation
- Elbs persulfate oxidation
- Emde degradation
- Eschweiler–Clarke reaction
- Étard reaction
- Fischer–Tropsch process
- Fleming–Tamao oxidation
- Fukuyama reduction
- Ganem oxidation
- Glycol cleavage
- Griesbaum coozonolysis
- Grundmann aldehyde synthesis
- Haloform reaction
- Hydrogenation
- Hydrogenolysis
- Hydroxylation
- Jones oxidation
- Kiliani–Fischer synthesis
- Kolbe electrolysis
- Kornblum oxidation
- Kornblum–DeLaMare rearrangement
- Leuckart reaction
- Ley oxidation
- Lindgren oxidation
- Lipid peroxidation
- Lombardo methylenation
- Luche reduction
- Markó–Lam deoxygenation
- McFadyen–Stevens reaction
- Meerwein–Ponndorf–Verley reduction
- Methionine sulfoxide
- Miyaura borylation
- Mozingo reduction
- Noyori asymmetric hydrogenation
- Omega oxidation
- Oppenauer oxidation
- Oxygen rebound mechanism
- Ozonolysis
- Parikh–Doering oxidation
- Pinnick oxidation
- Prévost reaction
- Reduction of nitro compounds
- Reductive amination
- Riley oxidation
- Rosenmund reduction
- Rubottom oxidation
- Sabatier reaction
- Sarett oxidation
- Selenoxide elimination
- Shapiro reaction
- Sharpless asymmetric dihydroxylation
- Epoxidation of allylic alcohols
- Sharpless epoxidation
- Sharpless oxyamination
- Stahl oxidation
- Staudinger reaction
- Stephen aldehyde synthesis
- Swern oxidation
- Transfer hydrogenation
- Wacker process
- Wharton reaction
- Whiting reaction
- Wohl–Aue reaction
- Wolff–Kishner reduction
- Wolffenstein–Böters reaction
- Zinin reaction
|
---|
Rearrangement reactions |
- 1,2-rearrangement
- 1,2-Wittig rearrangement
- 2,3-sigmatropic rearrangement
- 2,3-Wittig rearrangement
- Achmatowicz reaction
- Alkyne zipper reaction
- Allen–Millar–Trippett rearrangement
- Allylic rearrangement
- Alpha-ketol rearrangement
- Amadori rearrangement
- Arndt–Eistert reaction
- Aza-Cope rearrangement
- Baker–Venkataraman rearrangement
- Bamberger rearrangement
- Banert cascade
- Beckmann rearrangement
- Benzilic acid rearrangement
- Bergman cyclization
- Bergmann degradation
- Boekelheide reaction
- Brook rearrangement
- Buchner ring expansion
- Carroll rearrangement
- Chan rearrangement
- Claisen rearrangement
- Cope rearrangement
- Corey–Fuchs reaction
- Cornforth rearrangement
- Criegee rearrangement
- Curtius rearrangement
- Demjanov rearrangement
- Di-π-methane rearrangement
- Dimroth rearrangement
- Divinylcyclopropane-cycloheptadiene rearrangement
- Dowd–Beckwith ring-expansion reaction
- Electrocyclic reaction
- Ene reaction
- Enyne metathesis
- Favorskii reaction
- Favorskii rearrangement
- Ferrier carbocyclization
- Ferrier rearrangement
- Fischer–Hepp rearrangement
- Fries rearrangement
- Fritsch–Buttenberg–Wiechell rearrangement
- Gabriel–Colman rearrangement
- Group transfer reaction
- Halogen dance rearrangement
- Hayashi rearrangement
- Hofmann rearrangement
- Hofmann–Martius rearrangement
- Ireland–Claisen rearrangement
- Jacobsen rearrangement
- Kornblum–DeLaMare rearrangement
- Kowalski ester homologation
- Lobry de Bruyn–Van Ekenstein transformation
- Lossen rearrangement
- McFadyen–Stevens reaction
- McLafferty rearrangement
- Meyer–Schuster rearrangement
- Mislow–Evans rearrangement
- Mumm rearrangement
- Myers allene synthesis
- Nazarov cyclization reaction
- Neber rearrangement
- Newman–Kwart rearrangement
- Overman rearrangement
- Oxy-Cope rearrangement
- Pericyclic reaction
- Piancatelli rearrangement
- Pinacol rearrangement
- Pummerer rearrangement
- Ramberg–Bäcklund reaction
- Ring expansion and contraction
- Ring-closing metathesis
- Rupe reaction
- Schmidt reaction
- Semipinacol rearrangement
- Seyferth–Gilbert homologation
- Sigmatropic reaction
- Skattebøl rearrangement
- Smiles rearrangement
- Sommelet–Hauser rearrangement
- Stevens rearrangement
- Stieglitz rearrangement
- Thermal rearrangement of aromatic hydrocarbons
- Tiffeneau–Demjanov rearrangement
- Vinylcyclopropane rearrangement
- Wagner–Meerwein rearrangement
- Wallach rearrangement
- Weerman degradation
- Westphalen–Lettré rearrangement
- Willgerodt rearrangement
- Wolff rearrangement
|
---|
Ring forming reactions |
- 1,3-Dipolar cycloaddition
- Annulation
- Azide-alkyne Huisgen cycloaddition
- Baeyer–Emmerling indole synthesis
- Bartoli indole synthesis
- Bergman cyclization
- Biginelli reaction
- Bischler–Möhlau indole synthesis
- Bischler–Napieralski reaction
- Blum–Ittah aziridine synthesis
- Bobbitt reaction
- Bohlmann–Rahtz pyridine synthesis
- Borsche–Drechsel cyclization
- Bucherer carbazole synthesis
- Bucherer–Bergs reaction
- Cadogan–Sundberg indole synthesis
- Camps quinoline synthesis
- Chichibabin pyridine synthesis
- Cook–Heilbron thiazole synthesis
- Cycloaddition
- Darzens reaction
- Davis–Beirut reaction
- De Kimpe aziridine synthesis
- Debus–Radziszewski imidazole synthesis
- Dieckmann condensation
- Diels–Alder reaction
- Feist–Benary synthesis
- Ferrario–Ackermann reaction
- Fiesselmann thiophene synthesis
- Fischer indole synthesis
- Fischer oxazole synthesis
- Friedländer synthesis
- Gewald reaction
- Graham reaction
- Hantzsch pyridine synthesis
- Hegedus indole synthesis
- Hemetsberger indole synthesis
- Hofmann–Löffler reaction
- Hurd–Mori 1,2,3-thiadiazole synthesis
- Iodolactonization
- Isay reaction
- Jacobsen epoxidation
- Johnson–Corey–Chaykovsky reaction
- Knorr pyrrole synthesis
- Knorr quinoline synthesis
- Kröhnke pyridine synthesis
- Kulinkovich reaction
- Larock indole synthesis
- Madelung synthesis
- Nazarov cyclization reaction
- Nenitzescu indole synthesis
- Niementowski quinazoline synthesis
- Niementowski quinoline synthesis
- Paal–Knorr synthesis
- Paternò–Büchi reaction
- Pechmann condensation
- Petrenko-Kritschenko piperidone synthesis
- Pictet–Spengler reaction
- Pomeranz–Fritsch reaction
- Prilezhaev reaction
- Pschorr cyclization
- Reissert indole synthesis
- Ring-closing metathesis
- Robinson annulation
- Sharpless epoxidation
- Simmons–Smith reaction
- Skraup reaction
- Urech hydantoin synthesis
- Van Leusen reaction
- Wenker synthesis
Cycloaddition |
- 1,3-Dipolar cycloaddition
- 4+4 Photocycloaddition
- (4+3) cycloaddition
- 6+4 Cycloaddition
- Alkyne trimerisation
- Aza-Diels–Alder reaction
- Azide-alkyne Huisgen cycloaddition
- Bradsher cycloaddition
- Cheletropic reaction
- Conia-ene reaction
- Cyclopropanation
- Diazoalkane 1,3-dipolar cycloaddition
- Diels–Alder reaction
- Enone–alkene cycloadditions
- Hexadehydro Diels–Alder reaction
- Intramolecular Diels–Alder cycloaddition
- Inverse electron-demand Diels–Alder reaction
- Ketene cycloaddition
- McCormack reaction
- Metal-centered cycloaddition reactions
- Nitrone-olefin (3+2) cycloaddition
- Oxo-Diels–Alder reaction
- Ozonolysis
- Pauson–Khand reaction
- Povarov reaction
- Prato reaction
- Retro-Diels–Alder reaction
- Staudinger synthesis
- Trimethylenemethane cycloaddition
- Vinylcyclopropane (5+2) cycloaddition
- Wagner-Jauregg reaction
|
---|
Heterocycle forming reactions |
- Algar–Flynn–Oyamada reaction
- Allan–Robinson reaction
- Auwers synthesis
- Bamberger triazine synthesis
- Banert cascade
- Barton–Zard reaction
- Bernthsen acridine synthesis
- Bischler–Napieralski reaction
- Bobbitt reaction
- Boger pyridine synthesis
- Borsche–Drechsel cyclization
- Bucherer carbazole synthesis
- Bucherer–Bergs reaction
- Chichibabin pyridine synthesis
- Cook–Heilbron thiazole synthesis
- Diazoalkane 1,3-dipolar cycloaddition
- Einhorn–Brunner reaction
- Erlenmeyer–Plöchl azlactone and amino-acid synthesis
- Feist–Benary synthesis
- Fischer oxazole synthesis
- Gabriel–Colman rearrangement
- Gewald reaction
- Hantzsch ester
- Hantzsch pyridine synthesis
- Herz reaction
- Knorr pyrrole synthesis
- Kröhnke pyridine synthesis
- Lectka enantioselective beta-lactam synthesis
- Lehmstedt–Tanasescu reaction
- Niementowski quinazoline synthesis
- Nitrone-olefin (3+2) cycloaddition
- Paal–Knorr synthesis
- Pellizzari reaction
- Pictet–Spengler reaction
- Pomeranz–Fritsch reaction
- Prilezhaev reaction
- Robinson–Gabriel synthesis
- Stollé synthesis
- Urech hydantoin synthesis
- Wenker synthesis
- Wohl–Aue reaction
|
---|
|
---|
|